

Feb 19-8:47 AM

Oct 8-8:55 AM

#Red P(#Red) 12/90 12 1 48/90 12 30/90 12	Clear all lists #Red -> LI P(#Red) -> L2 Use II-Var Stats With LI & L2 X=.8 Sx=Blank n=1 - Total Prob.
---	--

Oct 8-9:05 AM

4 Women, 6 Men

we need 3 people (No replacement)

W W W M M M M M

N M M M M M

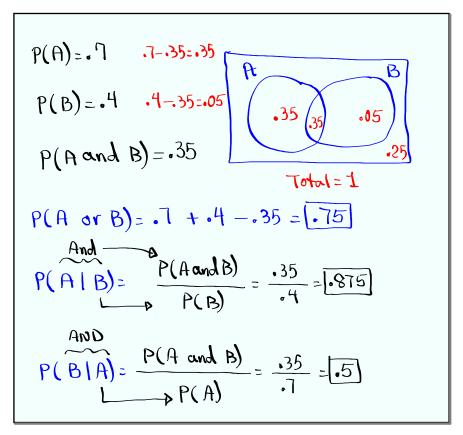
P(WWW) =
$$\frac{4}{10}$$
, $\frac{3}{9}$, $\frac{2}{8}$ = $\frac{1}{30}$

P($\frac{3}{10}$, $\frac{4}{9}$, $\frac{3}{8}$, $\frac{6}{10}$ = $\frac{3}{10}$

P($\frac{1}{10}$, $\frac{3}{9}$, $\frac{4}{10}$, $\frac{3}{9}$, $\frac{6}{8}$ = $\frac{3}{10}$

P($\frac{1}{10}$, $\frac{3}{10}$, $\frac{4}{10}$, $\frac{3}{10}$, $\frac{6}{10}$, $\frac{5}{10}$, $\frac{1}{10}$

P($\frac{1}{10}$, $\frac{1}{10}$, $\frac{4}{10}$, $\frac{5}{10}$, $\frac{4}{10}$, $\frac{1}{10}$, $\frac{1}{1$


Oct 8-9:10 AM

# W	P(#W) clear All lists	
(3	1/30) #W-PLI	
2 (11)	3/10 10	
1	1/2 P(#w) > L2	
	1/6 Use 1-Var Stats	
with LIELZ		
$\overline{\chi} = 1.2$		
	Sx = blank	
	$\gamma = 1$	

Oct 8-9:20 AM

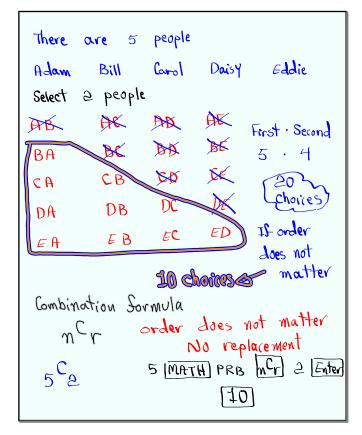
Product Rule
$$P(A \text{ and } B) = P(A) \cdot P(B|A)$$

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$
Conditional Prob.

Oct 8-9:27 AM

P(cossee) = .6 .6-.5=.1

P(Donut) = .8 .8-.5=.3


P(Cossee and Donut) = .5

And

P(Cossee [Donut] =
$$\frac{R(cossee and Donut)}{P(Donut)} = \frac{.5}{.8} = [.625]$$

AND

P(Cossee) = $\frac{P(cossee)}{P(Donut)} = \frac{.5}{.6} \approx [.833]$

Oct 8-9:40 AM

A basketball team has 12 players, coach needs 5 players to start the game.

How many ways can the coach select starting 5 players? 12°5 = 1792

CA Lotto, 50 numbers, choose 5

50°5 = 2,118,760

- 1) How many ways can you do this?
- 2) How many ways can you select 2 Women $\dot{\varepsilon}$ 2 Men $_{4}$ $_{5}$ $_{6}$ $_{2}$ = 90

3)
$$P(2W \neq 2M) = \frac{4^{2} \cdot 6^{2}}{10^{2} + 210} = \frac{90}{210} = \frac{3}{1}$$

Oct 8-9:52 AM

Draw 5 Cards, No replacement

order does not matter

$$P(4 \text{ face } \neq 1 \text{ Ace}) = \frac{12^{2} 4 \cdot 4^{2} 1}{52^{2} 5}$$

$$= \frac{1980}{2598960} = \frac{33}{43316}$$

$$\approx 17.6 \times 10^{-4}$$